
STABILITY OF A GAS BOUNDARY LAYER ON A HEATED SURFACE WITH A WEAK 

NEGATIVE PRESSURE GRADIENT 

Yu. I: Bublikov and V. M. Fomichev UDC 532 .526  

It is well known that cooling of a surface leads to stability of a laminar gas boundary 
layer and retardation of the transition to the turbulent flow regime, while heating reduces 
stability and accelerates the transition. The former property is regarded as an effective 
means of laminarizing a surface, for example, the wing surface of an aircraft[l, 2]. 

These properties have been established both experimentally and theoretically for con- 
stant surface temperature and absence of a pressure gradient. It was noted relatively re- 
cently that in the presence of a surface temperature gradient the absolute opposite effects 
can be observed - destabilization of a laminar gas boundary layer upon surface cooling and 
stabilization upon heating [3-5]. 

The stability of laminar flows and their transition to turbulence on curvilinear sur- 
faces under nonisothermal conditions had not been studied previously, with the exception of 
[6], which carried out experiments on an NASA 0012 wing profile oriented at zero and small 
attack angles in an aerodynamic tube. It was established that heating of the nose of the 
profile, which comprised about 10% of its total length, produced an increase in stability 
with the transition point shifting down the flow by approximately 20%. 

The present authors have carried out a theoretical study of the effect of significant 
negative pressure gradients on stability of a laminar boundary layer on a uniformly heated 
surface. A significant increase in stability and decrease in growth increments was obtained, 
which agrees qualitatively with the experimental data of [6]. 

The goal of the present study is to demonstrate that even for a very slight pressure 
gradient flow stability increases on a surface uniformly heated with sufficient intensity. 
As will become evident below, the case of weak pressure gradients differs qualitatively from 
that studied previously by us in several new features. Such a study is of practical impor- 
tance from the viewpoint of experimental verification of the stabilization effect, since, 
for example, by placing a plate at a slight angle of attack in an aerodynamic tube the high 
Reynolds number values necessary for fixing the beginning of transition and the transition 
itself can be obtained. 

We will consider a planar infrasonic laminar gas boundary layer on a heated surface 
with negative pressure gradient. The mathematical model is a system of equations consisting 
of the continuity equation, the Navier-Stokes equation, written for the two projections of 
the velocity vector, and the energy equation neglecting viscous dissipation: 

Ou 
P - - E l  = - - -  

Dr 
P Dt 

Op Opu Opv 
ot + --~-- + --~-y = O, 

ox oy "~y - ~ z  ' 

o[ (oo (.oo oo)] 
oy + T i  ~ - ~  + oz/J --5-~ ~ 2-~  ox ' 

D 0 0 0 

(i) 

The boundary conditions are: 

u = O ,  T = T ~ ,  v = O  (y = 0), 
u - -+  u~, T - +  T, (y--+ oo).  

i Moscow. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 2, pp. 
72-76, March-April, 1992. Original article submitted February 12, 1991. 
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Here x and y are the longitudinal and transverse coordinates; u and v are the corresponding 
velocity components, p is pressure, p is gas density; Cp is the gas heat capacity at constant 

pressure, T is the absolute temperature; D and I are the viscosity and thermal conductivity 
coefficients. 

Linearizing system (i), we obtain equations describing the development of small distur- 
bances in the boundary layer. Using the obvious assumption of smallness of the wavelength 
of the disturbance (Tollmien-Schlichting wave) as compared to the characteristic length for 
change in temperature, which is comparable to the size of the surface L) assuming a plano- 
parallel boundary layer [i, 2] we represent the flow function perturbation in the form of a 
plane wave ~,(y) exp (i~(x - ct)) [~(y) is the flow function amplitude, ~ = 2~/I 0 is the wave 
number, c is the wave phase velocity]. By eliminating the pressure perturbation from the 
linearized equations the system obtained can be written in the form of one equation which is 
quite cumbersome, and therefore will not be presented. In the variables 

Y 

= x/L, h = ~ xvel ~ dy 
0 

i t  was p r e s e n t e d  in  [3 ,  5 ] .  

Thus ,  t h e  p r o b l e m  u n d e r  c o n s i d e r a t i o n  h a s  been  r e d u c e d  t o  d e t e r m i n a t i o n  o f  e i g e n v a l u e s  
o f  a l i n e a r  b o u n d a r y  p r o b l e m  w i t h  homogeneous  b o u n d a r y  c o n d i t i o n s .  Fo r  i t s  s o l u t i o n  we w i l l  
r e q u i r e  c o e f f i c i e n t s  wh ich  c o n t a i n  t h e  v e l o c i t y ,  t e m p e r a t u r e ,  and v i s c o s i t y  d i s t r i b u t i o n s  
and  t h e i r  d e r i v a t i v e s  o v e r  t h e  t h i c k n e s s  o f  t h e  b o u n d a r y  l a y e r .  T h e s e  can  be  f o u n d  by  s o l v -  
ing  t h e  b o u n d a r y  l a y e r  t e m p e r a t u r e  e q u a t i o n s ,  wh ich  in  t h e  v a r i a b l e s  u s e d  h e r e  h a v e  t h e  s e l f -  
s i m i l a r  f o r m  

,, + ( ,, i , , , )  k ,~ + 
( k l " ) '  + - - - c  I /  + - - = % ,  I F  + = (2) 

,, , , where (D,=~(f' af' - - i  -~)'@2=~(f-~-~-- , '  Pr is the Prandtl number; 

differentiation with respect to the variable ~. 

The boundary conditions are: 

and the prime denotes 

f = o ,  I '  = o,  ~ = t~(~)  (n = o) ,  

i ' = l , ~ = t  (q=oo). ( 3 )  

For the Folkner-Sken type boundary layers considered below, where u e = u0 xn, the bound- 
ary problem of Eqs. (2), (3) takes on a self-similar form (~z = 0, r = 0). The eigenvalues 
of the linear boundary problem were determined numerically by a computer using a modified 
orthogonalization method, with numerical coefficients determined by numerical solution of 
the problem of Eqs. (2) and (3) by the Keller method [3]. 
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The calculation results are shown in Figs. 1-6. Figures 1-3 (with pressure gradient 
parameter n = 0.04, 0.07, 0.i, respectively) show neutral stability curves in the plane of 
dimensionless frequency F = ~e/Ue 2 and Reynolds number R = (UeX/~e) I/2 for a temperature 
factor #w = Tw/Te = 2, 3, 4 (lines 1-3). Here, as well as in Figs. 4 and 5 the dashed line 
corresponds to an isothermal boundary layer. In all the figures at relatively small values 
of ~w we initially see a decrease in the minimum critical Reynoldsnumber Rcr min and expansion 
of the unstable frequency range, after which the Reynolds number increases and the frequency range 
narrows with further growth in ~w. Thus, for n = 0.07 at #w = 2,. Rcrmin decreases only in- 
significantly, while at ~w = 4 it increases by approximately 2.4 times, which corresponds 
to an increase in the laminar overflow segment by almost six times. 

Even more interesting conclusions can be drawn from the curves shown in Fig. 4 of integ- 

~=--i ~idz (where A is the perturbation amplitude, ral perturbation increase increments ]n A0 

X 0 

A 0 is the initial amplitude, x0 is the value of the x coordinate corresponding to the left 
branch of the neutral stability curve for a given F, ~i is the local increment, i.e., the 
imaginary component of the wave number =), where a corresponds to n = 0.04, F = 1.4.10-5; b) 
n = 0.07, F = 7.3.10-6; c)! n=0.1, F= 6-10-6; with curves 1-3 being ~w values as in Figs. 
1-3. 

It is evident that at relatively small ~w perturbations increase more intensely than 
under isothermal conditions. On the other hand, for large values of ~w of the perturbation 
increments can be significantly less than the isothermal values. Thus, for n = 0.i and ~w = 
3 a decrease of somewhat less than two times takes place in maximum perturbation increase, 
while for ~w = 4 the decrease is almost seven times. This corresponds to a decrease in max- 
imum perturbation amplitude by nine times in the first case and three orders of magnitude in 
the second. 
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A complete explanation of this nonmonotonic action of nonisothermal conditions on sta- 
bility characteristics is quite complicated. However the increase in stability at high ~w 
is apparently related to the significantly higher filling of the velocity profile in the wall 
region as compared to isothermal conditions. This can be seen from the calculation results 
presented in Fig. 5 for n = 0.07. The curve enumeration corresponds to the @w values of 
Figs. 1-3. 

The character of the temperature factor's effect on stability noted above is shown in 
Fig. 6 by curves of Rcrmin as a function of ~w for n = 0.04, 0.07, 0.i (lines 1-31); these 
are nonmonotonic and have a minimum, the position of which depends on the pressure gradient 
parameter. Thus, while for n = 0.i the minimum is at ~w = 1.5, for n = 0.04 it occurs at 
~w = 2. For further decrease the position shifts into the region of higher ~ values. The 
fact that no experiments were performed under significantly nonisothermal conditions is 
apparently the reason that stabilization due to uniform surface heating was not observed 
previously. 

Thus, even a slight negative temperature gradient exerts a significant effect upon sta- 
bility characteristics on the heated surface. For sufficiently intense heating boundary 
stability layer may be significantly greater than under isothermal conditions. 
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